Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Brain Behav Immun ; 112: 51-76, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2327655

RESUMEN

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.

2.
Sci Immunol ; 7(76): eadd4853, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2088390

RESUMEN

SARS-CoV-2 mRNA vaccination induces robust humoral and cellular immunity in the circulation; however, it is currently unknown whether it elicits effective immune responses in the respiratory tract, particularly against variants of concern (VOCs), including Omicron. We compared the SARS-CoV-2 S-specific total and neutralizing antibody responses, and B and T cell immunity, in the bronchoalveolar lavage fluid (BAL) and blood of COVID-19-vaccinated individuals and hospitalized patients. Vaccinated individuals had significantly lower levels of neutralizing antibody against D614G, Delta (B.1.617.2), and Omicron BA.1.1 in the BAL compared with COVID-19 convalescents despite robust S-specific antibody responses in the blood. Furthermore, mRNA vaccination induced circulating S-specific B and T cell immunity, but in contrast to COVID-19 convalescents, these responses were absent in the BAL of vaccinated individuals. Using a mouse immunization model, we demonstrated that systemic mRNA vaccination alone induced weak respiratory mucosal neutralizing antibody responses, especially against SARS-CoV-2 Omicron BA.1.1 in mice; however, a combination of systemic mRNA vaccination plus mucosal adenovirus-S immunization induced strong neutralizing antibody responses not only against the ancestral virus but also the Omicron BA.1.1 variant. Together, our study supports the contention that the current COVID-19 vaccines are highly effective against severe disease development, likely through recruiting circulating B and T cell responses during reinfection, but offer limited protection against breakthrough infection, especially by the Omicron sublineage. Hence, mucosal booster vaccination is needed to establish robust sterilizing immunity in the respiratory tract against SARS-CoV-2, including infection by the Omicron sublineage and future VOCs.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Inmunidad Mucosa , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Virales/genética , Anticuerpos Antivirales , ARN Mensajero , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacunación , Sistema Respiratorio , Anticuerpos Neutralizantes
3.
Sci Immunol ; 5(53)2020 11 06.
Artículo en Inglés | MEDLINE | ID: covidwho-999190

RESUMEN

Lower respiratory viral infections, such as influenza virus and severe acute respiratory syndrome coronavirus 2 infections, often cause severe viral pneumonia in aged individuals. Here, we report that influenza viral pneumonia leads to chronic nonresolving lung pathology and exacerbated accumulation of CD8+ tissue-resident memory T cells (TRM) in the respiratory tract of aged hosts. TRM cell accumulation relies on elevated TGF-ß present in aged tissues. Further, we show that TRM cells isolated from aged lungs lack a subpopulation characterized by expression of molecules involved in TCR signaling and effector function. Consequently, TRM cells from aged lungs were insufficient to provide heterologous protective immunity. The depletion of CD8+ TRM cells dampens persistent chronic lung inflammation and ameliorates tissue fibrosis in aged, but not young, animals. Collectively, our data demonstrate that age-associated TRM cell malfunction supports chronic lung inflammatory and fibrotic sequelae after viral pneumonia.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Memoria Inmunológica/inmunología , Pulmón/inmunología , Neumonía Viral/inmunología , SARS-CoV-2/inmunología , Factores de Edad , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Humanos , Gripe Humana/inmunología , Gripe Humana/metabolismo , Gripe Humana/virología , Pulmón/metabolismo , Pulmón/virología , Ratones Endogámicos C57BL , Orthomyxoviridae/inmunología , Orthomyxoviridae/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Pandemias , Neumonía Viral/metabolismo , Neumonía Viral/virología , SARS-CoV-2/fisiología , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo
4.
Antibiotics (Basel) ; 9(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: covidwho-209750

RESUMEN

This is a case of a 72 year old male with a chronic methicillin-resistant Staphylococcus aureus prosthetic joint infection. After the third intravenous dose of bacteriophage therapy, an unusual, reversible transaminitis prompted stoppage of bacteriophage therapy. Nevertheless, treatment was successful and the patient's severe chronic infection was eradicated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA